Evaluating somatic cell scores with a Bayesian Gaussian linear state-space model.

نویسندگان

  • J Detilleux
  • L Theron
  • E Reding
  • C Bertozzi
  • C Hanzen
چکیده

Because accurate characterization of health state is important for managing dairy herds, we propose to validate the use of a linear state-space model (LSSM) for evaluating monthly somatic cell scores (SCSs). To do so, we retrieved SCS from a dairy database and collected reports on clinical mastitis collected in 20 farms, during the period from January 2008 to December 2011 in the Walloon region of Belgium. The dependent variable was the SCS, and the independent variables were the number of days from calving, year of calving and parity. The LSSM also incorporated an error-free underlying variable that described the trend across time as a function of previous clinical and subclinical status. We computed the mean sum of squared differences between observed SCS and median values of the posterior SCS distribution and constructed the receiver operating characteristic (ROC) curve for SCS thresholds going from 0 to 6. Our results show SCS estimates are close to observed SCS and area under the ROC curve is higher than 90%. We discuss the meaning of the parameters in light of our current knowledge of the disease and propose methods to incorporate, in LSSM, this knowledge often expressed in the form of ordinary differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Monitoring and Intervention in Linear Gaussian State-space Models: a Bayesian Approach

An automatic monitoring and intervention algorithm that permits the supervision of very general aspects in an univariate linear gaussian state space model is proposed. The algorithm makes use of a model comparison and selection approach within a Bayesian framework. In addition, this algorithm incorporates the possibility of eliminating earlier interventions when subsequent evidence against them...

متن کامل

Dynamic generalized linear models for non-Gaussian time series forecasting

The purpose of this paper is to provide a discussion, with illustrating examples, on Bayesian forecasting for dynamic generalized linear models (DGLMs). Adopting approximate Bayesian analysis, based on conjugate forms and on Bayes linear estimation, we describe the theoretical framework and then we provide detailed examples of response distributions, including binomial, Poisson, negative binomi...

متن کامل

Study of Different Backends in a State-Of-the-Art Language Recognition System

State of the art language recognition systems usually add a backend prior to the linear fusion of the subsystems scores. The backend plays a dual role. When the set of languages for which models have been trained does not match the set of target languages, the backend maps the available scores to the space of target languages. On the other hand, the backend serves as a precalibration stage that...

متن کامل

Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach

We describe two related models to cluster multidimensional time-series under the assumption of an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster when they show global similarity in their dynamics, while in the second model times-series are assigned to the same cluster when they show simultaneous similarity. Both models are based o...

متن کامل

Bayesian Inference for Generalized Additive Regression based on Dynamic Models

We present a general approach for Bayesian inference via Markov chain Monte Carlo MCMC simulation in generalized additive semiparametric and mixed models It is particularly appropriate for discrete and other fundamentally non Gaussian responses where Gibbs sampling techniques developed for Gaussian models cannot be applied We use the close relation between nonparametric regression and dynamic o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Animal : an international journal of animal bioscience

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2014